Quadratic Equation

Quadratic equations are the polynomial equations of degree 2 in one variable of type $f(x) = ax^2 + bx + c = 0$ where a, b, c, $\in R$ and $a \ne 0$. It is the general form of a quadratic equation where 'a' is called the leading coefficient and 'c' is called the absolute term of f(x). The values of x satisfying the quadratic equation are the roots of the quadratic equation (α, β) .

Quadratic Equation Definition

A quadratic polynomial, when equated to zero, becomes a quadratic equation. In other terms, a quadratic equation is a second degree algebraic equation. The values of x satisfying the equation are called the roots of the quadratic equation.

General from: $ax^2 + bx + c = 0$

Here, a, b, c, \in R and a \neq 0

Examples: $3x^2 + x + 5 = 0$, $-x^2 + 7x + 5 = 0$, $x^2 + x = 0$.

Quadratic Equation Formula

The solution or roots of a quadratic equation are given by the quadratic formula:

$$x = (\alpha, \beta) = [-b \pm \sqrt{(b^2 - 4ac)}]/2a$$

Roots of Quadratic Equation

The values of variables satisfying the given quadratic equation are called their roots. In other words, $x = \alpha$ is a root of the quadratic equation f(x), if $f(\alpha) = 0$.

The real roots of equation f(x) = 0 are the x-coordinates of the points where the curve y = f(x) intersects the x-axis.

- One of the roots of the quadratic equation is zero, and the other is -b/a if c = 0
- Both the roots are zero if b = c = 0
- The roots are reciprocal to each other if a = c

What Is Discriminant?

The term $(b^2 - 4ac)$ in the quadratic formula is known as the discriminant of a quadratic equation. The discriminant of a quadratic equation reveals the nature of roots.

Some Examples

Example : Find the values of k for which the quadratic expression (x - k)(x - 10) + 1 = 0 has integral roots.

Solution:

The given equation can be rewritten as, $x^2 - (10 + k)x + 1 + 10k = 0$.

$$D = b^2 - 4ac = 100 + k^2 + 20k - 40k = k^2 - 20k + 96 = (k - 10)^2 - 4$$

The quadratic equation will have integral roots if the value of discriminant > 0, D is a perfect square, a = 1 and b and c are integers.

i.e.,
$$(k-10)^2 - D = 4$$

Since the discriminant is a perfect square, the difference between two perfect squares in R.H.S will be 4 only when D = 0 and $(k - 10)^2 = 4$.

$$\Rightarrow$$
 k - 10 = \pm 2. Therefore, the values of k = 8 and 12.

Example : Find the values of k such that the equation p/(x + r) + q/(x - r) = k/2x has two equal roots.

Solution:

The given quadratic equation can be rewritten as:

$$[2p + 2q - k]x^{2} - 2r[p - q]x + r^{2}k = 0$$

For equal roots, the discriminant (D) = 0, i.e., $b^2 - 4ac = 0$

Here,
$$a = [2p + 2q - k]$$
, $b = -2r[p - q]$ and $c = r^2k$

$$[-2r\,(p-q)]^2 - 4[(2p+2q-k)\,(r^2k)] = 0$$

$$r^{2}(p-q)^{2}-r^{2}k(2p+2q-k)=0$$

Since
$$r \neq 0$$
, $(p-q)^2 - k(2p + 2q - k) = 0$

$$k^2 - 2(p+q)k + (p-q)^2$$

$$k = 2(p+q) \pm \sqrt{[4(p+q)^2 - 4(p-q)]^2/2} = -(p+q) \pm \sqrt{4pq}$$

$$\therefore$$
 The values of $k = (p + q) \pm 2\sqrt{pq} = (\sqrt{p} \pm \sqrt{q})^2$

Example : Find the quadratic equation with rational coefficients when one root is $1/(2 + \sqrt{5})$.

Solution:

If the coefficients are rational, then the irrational roots occur in conjugate pairs. Therefore, if one root is $\alpha = 1/(2 + \sqrt{5}) = \sqrt{5} - 2$, then the other root will be $\beta = 1/(2 - \sqrt{5}) = -\sqrt{5} - 2$.

The sum of the roots $\alpha + \beta = -4$ and the product of roots $\alpha \beta = -1$.

Thus, the required equation is $x^2 + 4x - 1 = 0$.

Example : Form a quadratic equation with real coefficients when one of its roots is (3 - 2i).

Solution:

Since the complex roots always occur in pairs, the other root is 3 + 2i. Therefore, by obtaining the sum and the product of the roots, we can form the required quadratic equation.

The sum of the roots is

$$(3+2i) + (3-2i) = 6$$
. The product of the root is $(3+2i) \times (3-2i) = 9-4i^2 = 9+4=13$.

Hence, the equation is $x^2 - Sx + P = 0$

Therefore, $x^2 - 6x + 13 = 0$ is the required quadratic equation.

EXERCISE

- 1. Equation of $(x+1)^2-x^2=0$ has number of real roots equal to:
- (a) 1
- (b) 2
- (c) 3
- (d) 4
- 2. The roots of $100x^2 20x + 1 = 0$ is:
- (a) 1/20 and 1/20
- (b) 1/10 and 1/20
- (c) 1/10 and 1/10
- (d) None of the above

3. The sum of two numbers is	s 27 and product is 182. The numbers are:
(a) 12 and 13	
(b) 13 and 14	
(c) 12 and 15	
(d) 13 and 24	
4. If 1/2 is a root of the quadr	ratic equation x^2 -mx-5/4=0, then value of m is:
(a) 2	
(b) -2	
(c) -3	
(d) 3	
5. The altitude of a right trial of the triangle are equal to:	ngle is 7 cm less than its base. If the hypotenuse is 13 cm, the other two s
(a) Base=10cm and Altitude=5	iem
(b) Base=12cm and Altitude=	5cm
(c) Base=14cm and Altitude=	10cm
(d) Base=12cm and Altitude=	10cm
	Answer Key
1. A	
2. C	
3. B	
4. B	
5. B	

NOTOPEDIA © 2025 Notopedia All rights reserved. info@notopedia.com (mailto:hello@notopedia.com) (mailto:hello@notopedia.com)

Material Add Request

Submit Material

School

(https://www.notopedia.com/school-board)

Sarkari Jobs

(https://www.notopedia.com/sarkarijobs)

Sarkari Exams

(https://www.notopedia.com/sarkarijobs-exam)

College Exams

(https://www.notopedia.com/college-entrance)

College Search

(https://www.notopedia.com/college-list)

Exam Calendar

(https://www.notopedia.com/exam-calender)

News

(https://www.notopedia.com/bulletin-board)

About us

(https://www.notopedia.com/about-us)
Contact

(https://www.notopedia.com/contact-us)

Legals

(https://www.notopedia.com/legals)

Face (https://www.facebook.com/Notopedia) (http

Twitter (https://twitter.com/notopedia) (https://twitte

(https://www.instagram.com/notopedia/) (ht

(https://www.youtube.com/@notopedia) (htt